

US009129802B2

(12) United States Patent

Ritenour

(10) **Patent No.:**

US 9,129,802 B2

(45) **Date of Patent:**

Sep. 8, 2015

(54) LATERAL SEMICONDUCTOR DEVICE WITH VERTICAL BREAKDOWN REGION

(71) Applicant: RF Micro Devices, Inc., Greensboro,

NC (US)

(72) Inventor: Andrew P. Ritenour, Colfax, NC (US)

(73) Assignee: **RF Micro Devices, Inc.**, Greensboro,

NC (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

(21) Appl. No.: 13/973,482

(22) Filed: Aug. 22, 2013

(65) Prior Publication Data

US 2014/0054585 A1 Feb. 27, 2014

Related U.S. Application Data

- (60) Provisional application No. 61/693,487, filed on Aug. 27, 2012.
- (51) **Int. Cl. H01L 21/00** (2006.01) **H01L 27/02** (2006.01)

 (Continued)
- (52) **U.S. Cl.** CPC *H01L*

CPC *H01L 27/0248* (2013.01); *H01L 29/4175* (2013.01); *H01L 29/41775* (2013.01); *H01L 29/2003* (2013.01); *H01L 29/778* (2013.01);

H01L 29/861 (2013.01)

(58) Field of Classification Search

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

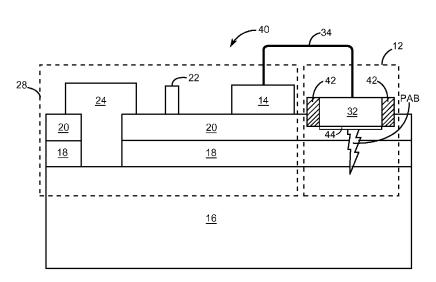
4,317,055 A 2/1982 Yoshida et al. 4,540,954 A 9/1985 Apel (Continued)

FOREIGN PATENT DOCUMENTS

EP 1187229 A1 3/2002 EP 1826041 A1 8/2007 (Continued)

OTHER PUBLICATIONS

International Search Report and Written Opinion for PCT/US2013/056105, mailed Feb. 12, 2014, 15 pages.


(Continued)

Primary Examiner — Laura Menz (74) Attorney, Agent, or Firm — Withrow & Terranova, P.L.L.C.

(57) ABSTRACT

A lateral semiconductor device having a vertical region for providing a protective avalanche breakdown (PAB) is disclosed. The lateral semiconductor device has a lateral structure that includes a conductive substrate, semi-insulating layer(s) disposed on the conductive substrate, device layer(s) disposed on the semi-insulating layer(s), along with a source electrode and a drain electrode disposed on the device layer(s). The vertical region is separated from the source electrode by a lateral region wherein the vertical region has a relatively lower breakdown voltage level than a relatively higher breakdown voltage level of the lateral region for providing the PAB within the vertical region to prevent a potentially damaging breakdown of the lateral region. The vertical region is structured to be more rugged than the lateral region and thus will not be damaged by a PAB event.

18 Claims, 2 Drawing Sheets

US 9,129,802 B2Page 2

(51)	Int. Cl.			6,614,281	В1	9/2003	Baudelot et al.
()	H01L 29/417	,	(2006.01)	6,621,140		9/2003	Gibson et al.
	H01L 29/778		(2006.01)	6,624,452			Yu et al.
			` /	6,627,552			Nishio et al.
	H01L 29/861		(2006.01)	6,633,073			Rezvani et al. Baudelot et al.
	H01L 29/20		(2006.01)	6,633,195 6,639,470			Andrys et al.
(50)		Defense	and Cited	6,656,271			Yonehara et al.
(56)		Reieren	ces Cited	6,657,592			Dening et al.
	TIC	DATENIT	DOCUMENTS	6,660,606		12/2003	Miyabayashi et al.
	0.5.	IAILINI	DOCOMENTS	6,701,134			Epperson
	4,543,535 A	9/1985	Avasli	6,701,138		3/2004	Epperson et al.
	4,620,207 A		Calviello	6,706,576 6,720,831			Ngo et al. Dening et al.
	4,788,511 A	11/1988	Schindler	6,723,587			Cho et al.
	5,028,879 A	7/1991		6,724,252			Ngo et al.
	5,046,155 A		Beyer et al.	6,727,762		4/2004	Kobayashi
	5,047,355 A 5,107,323 A		Huber et al. Knolle et al.	6,748,204	В1	6/2004	Razavi et al.
	5,118,993 A	6/1992		6,750,158			Ogawa et al.
	5,208,547 A		Schindler	6,750,482			Seaford et al.
	5,227,734 A		Schindler et al.	6,759,907 6,802,902			Orr et al. Beaumont et al.
	5,306,656 A	4/1994	Williams et al.	6,815,722			Lai et al.
	5,361,038 A		Allen et al.	6,815,730		11/2004	
	5,365,197 A		Ikalainen	6,822,842	B2	11/2004	Friedrichs et al.
	5,389,571 A 5,414,387 A		Takeuchi et al. Nakahara et al.	6,861,677		3/2005	
	5,485,118 A	1/1996		6,943,631			Scherrer et al.
	5,608,353 A	3/1997		7,015,512			Park et al.
	5,629,648 A	5/1997		7,026,665 7,033,961			Smart et al. Smart et al.
	5,698,870 A		Nakano et al.	7,042,150			Yasuda
	5,742,205 A		Cowen et al.	7,052,942			Smart et al.
	5,764,673 A		Kawazu et al.	7,211,822			Nagahama et al.
	5,834,326 A 5,843,590 A		Miyachi et al. Miura et al.	7,408,182			Smart et al.
	5,864,156 A		Juengling				Singh 257/493
	5,874,747 A		Redwing et al.	7,459,356			Smart et al.
	5,880,640 A		Dueme	7,557,421 7,719,055			Shealy et al. McNutt et al.
	5,914,501 A		Antle et al.	7,768,758			Maier et al.
	5,949,140 A		Nishi et al.	7,804,262			Schuster et al.
	6,049,250 A		Kintis et al.	7,935,983		5/2011	Saito et al 257/183
	6,064,082 A 6,110,757 A		Kawai et al. Udagawa et al.	7,968,391			Smart et al.
	6,130,579 A		Iyer et al.	7,974,322			Ueda et al.
	6,133,589 A		Krames et al.	8,017,981 8,405,068			Sankin et al. O'Keefe
	6,177,685 B1		Teraguchi et al.	8,502,258			O'Keefe
	6,191,656 B1	2/2001		8,633,518			Suh et al.
	6,229,395 B1	5/2001		8,692,294		4/2014	Chu et al.
	6,265,943 B1 6,271,727 B1		Dening et al. Schmukler	8,785,976			Nakajima et al.
	6,285,239 B1		Iyer et al.	2001/0040246			Ishii 257/192
	6,306,709 B1		Miyagi et al.	2001/0054848			Baudelot et al. Linthicum et al.
	6,307,364 B1		Augustine	2002/0031851 2002/0048302			Kimura
	6,313,705 B1		Dening et al.	2002/0079508			Yoshida
	6,329,809 B1		Dening et al.	2003/0003630			Iimura et al.
	6,333,677 B1 6,342,815 B1	12/2001	Kobayashi	2003/0122139			Meng et al.
	6,356,150 B1		Spears et al.	2003/0160307			Gibson et al.
	6,369,656 B2		Dening et al.	2003/0160317 2003/0206440		8/2003	Sakamoto et al.
	6,369,657 B2	4/2002	Dening et al.	2003/0200440			Gibson et al.
	6,373,318 B1		Dohnke et al.	2003/0218183			Micovic et al.
	6,376,864 B1	4/2002		2004/0070003			Gaska et al.
	6,377,125 B1 6,384,433 B1		Pavio et al. Barratt et al.	2004/0130037			Mishra et al.
	6,387,733 B1		Holyoak et al.	2004/0241916			Chau et al.
	6,392,487 B1		Alexanian	2005/0139868		6/2005	
	6,400,226 B2	6/2002		2005/0189559 2005/0189562			Saito et al. Kinzer et al.
	6,404,287 B2		Dening et al.	2005/0194612		9/2005	
	6,448,793 B1		Barratt et al.	2005/0212049			Onodera
	6,455,877 B1		Ogawa et al.	2005/0225912			Pant et al.
	6,475,916 B1 6,477,682 B2	11/2002	Lee et al.	2005/0271107			Murakami et al.
	6,521,998 B1		Teraguchi et al.	2006/0043385			Wang et al.
	6,525,611 B1		Dening et al.	2006/0068601			Lee et al.
	6,528,983 B1	3/2003	Augustine	2006/0124960			Hirose et al.
	6,560,452 B1	5/2003		2006/0243988			Narukawa et al.
	6,566,963 B1		Yan et al.	2007/0093009 2007/0295985			Baptist et al. Weeks, Jr. et al.
	6,589,877 B1 6,593,597 B2	7/2003	Thakur Sheu	2007/0293983			Saito et al
	6,608,367 B1		Gibson et al.	2008/0023700			Asai et al.
	5,500,507 D I	5, 2003	Closed et al.	_300,0013132		5,2000	٧٠ ١٨٠٠

(56) References Cited

U.S. PATENT DOCUMENTS

2008/0112448	A1	5/2008	Ueda et al.
2008/0121875	Al	5/2008	Kim
2008/0142837	A1	6/2008	Sato et al.
	Al	7/2008	Haga et al.
	Al	8/2008	Chen et al.
	Al	11/2008	Kim et al.
2008/0272422	Al	11/2008	Min
2008/0272422	Al	11/2008	Park et al.
	Al	12/2008	Suh et al.
	Al	3/2009	Suh et al.
	Al	4/2009	Khan et al.
2009/0090984		6/2009	Suh et al.
	A1	6/2009	Kub et al.
	A1		Shibata et al.
2009/0166677	A1*	7/2009	Sheridan et al
		11/2009	
2010/0025657		2/2010	Nagahama et al.
2010/0133567		6/2010	Son
2010/0187575		7/2010	Baumgartner et al.
	A1*	8/2010	Shibata et al 257/192
	A1	9/2010	O'Keefe
2010/0230717	A1	9/2010	Saito
	A1	10/2010	Lahreche
	A1	1/2011	O'Keefe
2011/0025422	A1	2/2011	Marra et al.
2011/0095337	A1	4/2011	Sato
2011/0101300	A1	5/2011	O'Keefe
2011/0115025	A1	5/2011	Okamoto
	A1	6/2011	Bobde et al.
2011/0163342	A1	7/2011	Kim et al.
2011/0175142	A1	7/2011	Tsurumi et al.
2011/0199148	A1	8/2011	Iwamura
2011/0211289	A1	9/2011	Kosowsky et al.
2011/0242921	A1	10/2011	Tran et al.
2011/0290174	A1	12/2011	Leonard et al.
2012/0018735	$\mathbf{A}1$	1/2012	Ishii
2012/0086497	A1	4/2012	Vorhaus
2012/0126240	A1	5/2012	Won
2012/0199875	A1	8/2012	Bhalla et al.
2012/0211802	A1	8/2012	Tamari
	A1*	8/2012	Imada 363/17
2012/0262220		10/2012	Springett
2013/0277687		10/2013	Kobayashi et al.
2013/0280877	Al	10/2013	Kobayashi et al.
2014/0054585		2/2014	Ritenour
			220220 A

FOREIGN PATENT DOCUMENTS

JP	10242584 A	9/1998
JP	2000031535 A	1/2000
JP	2003332618 A	11/2003
JP	2008148511 A	6/2008
JP	2008258419 A	10/2008
KR	20070066051 A	6/2007
WO	2004051707 A3	6/2004
WO	2011162243 A1	12/2011
WO	WO 2014035794 A1 *	3/2014

OTHER PUBLICATIONS

Chang, S.J. et al, "Improved ESD protection by combining InGaN—GaN MQW LEDs with GaN Schottky diodes," IEEE Electron Device Letters, Mar. 2003, vol. 24, No. 3, pp. 129-131.

Chao, C-H., et al., "Theoretical demonstration of enhancement of light extraction of flip-chip GaN light-emitting diodes with photonic crystals," Applied Physics Letters, vol. 89, 2006, 4 pages.

Fath, P. et al., "Mechanical wafer engineering for high efficiency solar cells: An investigation of the induced surface damage," Conference Record of the Twenty-Fourth IEEE Photovoltaic Specialists Conference, Dec. 5-9, 1994, vol. 2, pp. 1347-1350.

Han, D.S. et al., "Improvement of Light Extraction Efficiency of Flip-Chip Light-Emitting Diode by Texturing the Bottom Side Surface of Sapphire Substrate," IEEE Photonics Technology Letters, Jul. 1, 2006, vol. 18, No. 13, pp. 1406-1408.

Hibbard, D.L. et al., "Low Resistance High Reflectance Contacts to p—GaN Using Oxidized Ni/Au and Al or Ag," Applied Physics Letters, vol. 83 No. 2, Jul. 14, 2003, pp. 311-313.

Lee, S.J., "Study of photon extraction efficiency in InGaN light-emitting diodes depending on chip structures and chip-mount schemes," Optical Engineering, SPIE, Jan. 2006, vol. 45, No. 1, 14 pages.

Shchekin, O.B. et al., "High performance thin-film flip-chip InGaN—GaN light-emitting diodes," Applied Physics Letters, vol. 89, Jul. 11, 2009, Aug. 2006, 4 pages.

Wierer, J. et al., "High-power AlGaInN flip-chip light-emitting diodes," Applied Physics Letters, vol. 78 No. 22, May 28, 2001, pp. 3379-3381.

Windisch, R. et al., "40% Efficient Thin-Film Surface-Textured Light-Emitting Diodes by Optimization of Natural Lithography," IEEE Transactions on Electron Devices, Jul. 2000, vol. 47, No. 7, pp. 1492-1498.

Windisch, R. et al., "Impact of texture-enhanced transmission on high-efficiency surface-textured light-emitting diodes," Applied Physics Letters, Oct. 8, 2001, vol. 79, No. 15, pp. 2315-2317.

Advisory Action for U.S. Appl. No. 10/620,205, mailed Feb. 15, 2005, 2 pages.

Final Office Action for U.S. Appl. No. 10/620,205, mailed Dec. 16, 2004, 9 pages.

Non-Final Office Action for U.S. Appl. No. 10/620,205, mailed Jul. 23, 2004, 7 pages.

Non-Final Office Action for U.S. Appl. No. 10/620,205, mailed May 3, 2005, 10 pages.

Notice of Allowance for U.S. Appl. No. 10/620,205, mailed Dec. 8, 2005, 4 pages.

Non-Final Office Action for U.S. Appl. No. 10/689,980, mailed Jan. 26,2005,7 pages.

Non-Final Office Action for U.S. Appl. No. 10/689,980, mailed May 12, 2005, 8 pages.

Non-Final Office Action for U.S. Appl. No. 12/841,225 mailed Dec. 22, 2011, 8 pages.

Non-Final Office Action for U.S. Appl. No. 11/397,279, mailed Oct. 31, 2007, 7 pages.

Notice of Allowance for U.S. Appl. No. 11/397,279, mailed Apr. 17, 2008, 7 pages.

Final Office Action for U.S. Appl. No. 10/689,979, mailed Jun. 29, 2005, 16 pages.

Non-Final Office Action for U.S. Appl. No. 10/689,979, mailed Jan. 11, 2005, 14 pages.

Notice of Allowance for U.S. Appl. No. 10/689,979, mailed Oct. 26, 2005, 6 pages.

Notice of Allowance for U.S. Appl. No. 12/841,225, mailed Nov. 9, 2012, 5 pages.

Non-Final Office Action for U.S. Appl. No. 11/360,734, mailed Jan. 18, 2008, 10 pages.

Notice of Allowance for U.S. Appl. No. 11/360,734, mailed Aug. 7, 2008, 6 pages.

Non-Final Office Action for U.S. Appl. No. 12/841,257 mailed Jan. 5,

2012, 13 pages. Advisory Action for U.S. Appl. No. 11/937,207, mailed Feb. 2, 2010,

2 pages. Final Office Action for U.S. Appl. No. 11/937,207, mailed Nov. 19,

2009, 9 pages. Non-Final Office Action for U.S. Appl. No. 11/937,207, mailed Mar.

18, 2010, 10 pages.

Non-Final Office Action for U.S. Appl. No. 11/937,207, mailed May 29, 2009, 11 pages.

Notice of Allowance for U.S. Appl. No. 11/937,207, mailed Feb. 28, 2011, 8 pages.

Quayle Action for U.S. Appl. No. 11/937,207, mailed Nov. 24,2010, 4 pages.

Final Office Action for U.S. Appl. No. 11/458,833, mailed Dec. 15, 2008, 13 pages.

Non-Final Office Action for U.S. Appl. No. 11/458,833, mailed Apr. 1, 2008, 10 pages.

Notice of Allowance for U.S. Appl. No. 11/458,833, mailed Mar. 9, 2009, 7 pages.

(56) References Cited

OTHER PUBLICATIONS

Invitation to Pay Fees for PCT/US2013/056105, mailed Nov. 5, 2013, 7 pages.

International Search Report and Written Opinion for PCT/US2013/056126, mailed Oct. 25, 2013, 10 pages.

International Search Report and Written Opinion for PCT/US2013/056132, mailed Oct. 10, 2013, 11 pages.

International Search Report and Written Opinion for PCT/US2013/056187, mailed Oct. 10, 2013, 11 pages.

International Search Report for GB0902558.6, issued Jun. 15, 2010, by the UK Intellectual Property Office, 2 pages.

Examination Report for British Patent Application No. 0902558.6, mailed Nov. 16, 2012, 5 pages.

Examination Report for British Patent Application No. GB0902558. 6, issued Feb. 28, 2013, 2 pages.

Non-Final Office Action for U.S. Appl. No. 12/705,869, mailed Feb. 9, 2012, 10 pages.

Notice of Allowance for U.S. Appl. No. 12/705,869, mailed Apr. 4, 2013, 9 pages.

Notice of Allowance for U.S. Appl. No. 12/705,869, mailed Jul. 19, 2012, 8 pages.

Advisory Action for U.S. Appl. No. 12/841,225, mailed Apr. 16, 2012. 3 pages.

Final Office Action for U.S. Appl. No. 12/841,225 mailed Feb. 1, 2012, 9 pages.

Non-Final Office Action for U.S. Appl. No. 12/841,225, mailed May 2, 2012, 10 pages.

Non-Final Office Action for U.S. Appl. No. 13/927,182, mailed May 1, 2014, 7 pages.

Non-Final Office Action for U.S. Appl. No. 13/795,986, mailed Apr. 24, 2014, 13 pages.

Non-Final Office Action for U.S. Appl. No. 13/910,202, mailed Sep.

25, 2014, 9 pages. Final Office Action for U.S. Appl. No. 13/927,182, mailed Sep. 17,

2014, 10 pages. Non-Final Office Action for U.S. Appl. No. 13/974,488, mailed Oct.

28, 2014, 8 pages.

Non-Final Office Action for U.S. Appl. No. 13/966,400, mailed Sep. 3, 2014, 9 pages.

Non-Final Office Action for U.S. Appl. No. 13/957,698, mailed Nov. 5, 2014, 11 pages.

Boutros, K.S., et al., "5W GaN MMIC for Millimeter-Wave Applications," 2006 Compound Semiconductor Integrated Circuit Symposium, Nov. 2006, pp. 93-95.

Cho, H., et al., "High Density Plasma Via Hole Etching in SiC," Journal of Vacuum Science & Technology A: Surfaces, and Films, vol. 19, No. 4, Jul./Aug. 2001, pp. 1878-1881.

Darwish, A.M., et al., "Dependence of GaN HEMT Millimeter-Wave Performance on Temperature," IEEE Transactions on Microwave Theory and Techniques, vol. 57, No. 12, Dec. 2009, pp. 3205-3211. Krüger, Olaf, et al., "Laser-Assisted Processing of VIAs for AlGaN/GaN HEMTs on SiC Substrates," IEEE Electron Device Letters, vol. 27, No. 6, Jun. 2006, pp. 425-427.

Sheppard, S.T., et al., "High Power Demonstration at 10 GHz with GaN/AlGaN HEMT Hybrid Amplifiers," 2000 Device Research Conference, Conference Digest, Jun. 2000, pp. 37-38.

Non-Final Office Action for U.S. Appl. No. 13/795,926, mailed Dec. 19, 2014, 14 pages.

Non-Final Office Action for U.S. Appl. No. 13/942,998, mailed Nov. 19, 2014, 9 pages.

Non-Final Office Action for U.S. Appl. No. 13/871,526, mailed Dec. 16, 2014, 17 pages.

Final Office Action for U.S. Appl. No. 13/910,202, mailed Jan. 20, 2015, 10 pages.

Notice of Allowance for U.S. Appl. No. 13/914,060, mailed Nov. 13, 2014, 8 pages.

Final Office Action for U.S. Appl. No. 13/966,400, mailed Dec. 3, 2014, 8 pages.

Final Office Action for U.S. Appl. No. 13/795,986, mailed Dec. 5, 2014, 16 pages.

Author Unknown, "CGHV1J006D: 6 W, 18.0 GHz, GaN HEMT Die," Cree, Inc., 2014, 9 pages.

International Preliminary Report on Patentability for PCT/US2013/056105, mailed Mar. 5, 2015, 12 pages.

Advisory Action for U.S. Appl. No. 13/910,202, mailed Apr. 6, 2015,

International Preliminary Report on Patentability for PCT/US2013/

056126, mailed Mar. 5, 2015, 7 pages. Final Office Action for U.S. Appl. No. 13/974,488, mailed Feb. 20, 2015, 8 pages.

Notice of Allowance for U.S. Appl. No. 13/966,400, mailed Feb. 20, 2015, 8 pages.

Notice of Allowance for U.S. Appl. No. 13/957,698, mailed Mar. 30,

 $2015, 7 \ pages.$ International Preliminary Report on Patentability for PCT/US2013/

056132, mailed Mar. 5, 2015, 9 pages. International Preliminary Report on Patentability for PCT/US2013/

056187, mailed Mar. 12, 2015, 9 pages. Notice of Allowance for U.S. Appl. No. 13/795,986, mailed Mar. 6,

2015, 8 pages. Non-Final Office Action for U.S. Appl. No. 14/067,019, mailed Mar.

25, 2015, 7 pages.

Notice of Allowance for U.S. Appl. No. 13/795,926, mailed Apr. 27, 2015, 8 pages.

Notice of Allowance for U.S. Appl. No. 13/942,998, mailed Apr. 27, 2015, 8 pages.

Final Office Action for U.S. Appl. No. 13/871,526, mailed Jun. 17, 2015, 11 pages.

Notice of Allowance for U.S. Appl. No. 13/910,202, mailed May 14, 2015. 9 pages.

Notice of Allowance for U.S. Appl. No. 13/974,488, mailed May 29, 2015, 9 pages.

Corrected/Supplemental Notice of Allowability for U.S. Appl. No. 13/957,689, mailed May 20, 2015, 3 pages.

Corrected/Supplement Notice of Allowability for U.S. Appl. No. 13/957,689, mailed Jun. 9, 2015, 4 pages.

Notice of Allowance for U.S. Appl. No. 13/957,698, mailed Jul. 20, 2015, 7 pages.

* cited by examiner

<u>20</u>

<u>18</u>

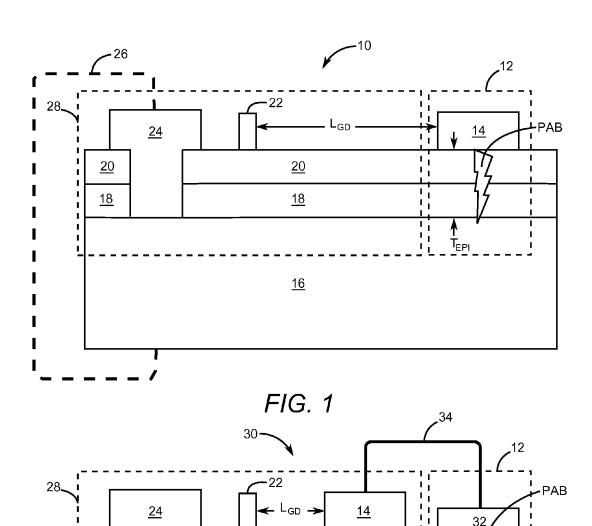


FIG. 2

<u>20</u>

<u>18</u>

<u>16</u>

Sep. 8, 2015

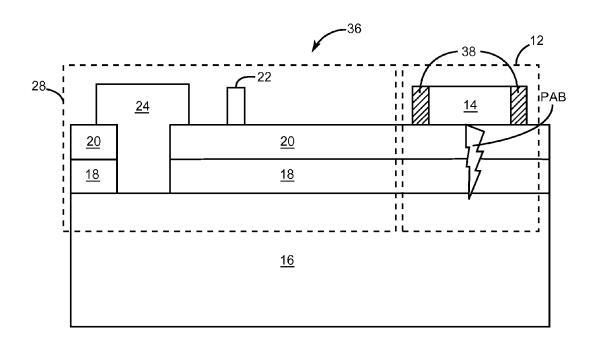


FIG. 3 -22 42 28. <u>24</u> <u>14</u> <u>32</u> <u>20</u> <u>20</u> 44/ <u>18</u> <u>18</u> <u>16</u>

FIG. 4

1

LATERAL SEMICONDUCTOR DEVICE WITH VERTICAL BREAKDOWN REGION

RELATED APPLICATIONS

This application claims the benefit of U.S. provisional patent application No. 61/693,487, filed Aug. 27, 2012, the disclosure of which is incorporated herein by reference in its entirety.

FIELD OF THE DISCLOSURE

The present disclosure relates to electronic devices that include overvoltage and current surge protection.

BACKGROUND

Gallium nitride (GaN) is commonly cited as a superior material for high-voltage power devices due to its wide bandgap and associated high electric field required for avalanche 20 breakdown. Ideal bulk GaN crystals have critical fields in excess of 3,000,000 V per centimeter. However, during operation of a lateral semiconductor device such as a GaN high electron mobility transistor (HEMT) a generally two dimenand/or field plates. As a result, high electric fields can occur in dielectrics around the gate and/or field plates. Moreover, in practice, a high electric field needed for avalanche breakdown is lowered by non-idealities that are present within the structure of a GaN device. During high-voltage operation of a GaN 30 device, electrical breakdown will typically occur at defects and/or at locations with a concentrated electric field. An example of such a breakdown location is a corner of a Schottky gate. An ideal structure comprising a bulk crystal such as silicon carbide (SiC) or GaN will avalanche uniformly in a 35 high electric field region. As a result, avalanche energy is distributed uniformly, which greatly enhances the survivability of a device made up of an ideal bulk crystal. For example, vertical p-n junctions fabricated in SiC homoepitaxial layers demonstrate avalanche breakdown ruggedness. However, 40 breakdown in defective GaN layers will typically occur at defects within defective GaN layers. A resulting high energy density typically causes irreversible damage to a device that includes defective GaN layers.

Another factor impacting breakdown ruggedness is the 45 nature of the metal semiconductor contacts that carry a breakdown current. Previous work with SiC Schottky diodes has demonstrated that Schottky contacts can be degraded by avalanche current. In response to this problem, junction barrier Schottky diodes have been developed to urge avalanche 50 breakdown to occur across a bulk p-n junction with ohmic contacts rather than Schottky contacts. Thus, the breakdown ruggedness of GaN HEMTs may be limited by breakdown events in highly localized areas within a semiconductor due to crystal defects and/or electric field concentration. Moreover, 55 the breakdown ruggedness of GaN HEMTs may be limited by an electrical breakdown of adjacent dielectric layers and/or high current flow through the Schottky gate electrode during breakdown events. Thus, there is a need to provide overvoltage protection for a lateral semiconductor device to ensure 60 that the lateral semiconductor device handles a typically destructive breakdown voltage without being damaged.

SUMMARY

A lateral semiconductor device having a vertical region for providing a protective avalanche breakdown (PAB) is dis2

closed. The lateral semiconductor device has a lateral structure that includes a conductive substrate, semi-insulating layer(s) disposed on the conductive substrate, device layer(s) disposed on the semi-insulating layer(s), along with a source electrode and a drain electrode disposed on the device layer(s). The vertical region is separated from the source electrode by a lateral region wherein the vertical region has a relatively lower breakdown voltage level than a relatively higher breakdown voltage level of the lateral region for providing the PAB within the vertical region to prevent a potentially damaging breakdown of the lateral region. The vertical region is structured to be more rugged than the lateral region and thus will not be damaged by a PAB event. As a result, the lateral semiconductor device of the present disclosure has an 15 advantage of surviving potentially damaging overvoltage and current surges.

Those skilled in the art will appreciate the scope of the disclosure and realize additional aspects thereof after reading the following detailed description in association with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings incorporated in and forming sional electric field is concentrated at the corners of a gate 25 a part of this specification illustrate several aspects of the disclosure, and together with the description serve to explain the principles of the disclosure.

> FIG. 1 is sectional view of a lateral transistor having a vertical region for protective avalanche breakdown between a drain electrode and a conductive substrate.

FIG. 2 is a sectional view of a lateral transistor wherein the vertical region includes an avalanche electrode coupled to the drain electrode and the conductive substrate.

FIG. 3 is a sectional view of a lateral transistor wherein the drain electrode includes an edge termination and is located within the vertical region.

FIG. 4 is a sectional view of a lateral transistor wherein the drain electrode is coupled to the avalanche electrode that includes an edge termination.

DETAILED DESCRIPTION

The embodiments set forth below represent the necessary information to enable those skilled in the art to practice the disclosure and illustrate the best mode of practicing the disclosure. Upon reading the following description in light of the accompanying drawings, those skilled in the art will understand the concepts of the disclosure and will recognize applications of these concepts not particularly addressed herein. It should be understood that these concepts and applications fall within the scope of the disclosure and the accompanying claims.

It will be understood that when an element such as a layer, region, or substrate is referred to as being "over," "on," "in," or extending "onto" another element, it can be directly over, directly on, directly in, or extend directly onto the other element or intervening elements may also be present. In contrast, when an element is referred to as being "directly over," "directly on," "directly in," or extending "directly onto" another element, there are no intervening elements present. It will also be understood that when an element is referred to as being "connected" or "coupled" to another element, it can be directly connected or coupled to the other element or intervening elements may be present. In contrast, when an element is referred to as being "directly connected" or "directly coupled" to another element, there are no intervening elements present.

3

Relative terms such as "below" or "above" or "upper" or "lower" or "horizontal" or "vertical" may be used herein to describe a relationship of one element, layer, or region to another element, layer, or region as illustrated in the Figures. It will be understood that these terms and those discussed 5 above are intended to encompass different orientations of the device in addition to the orientation depicted in the Figures.

The present disclosure describes embodiments of a lateral semiconductor device having a vertical region for providing a protective avalanche breakdown (PAB) that enhances the 10 voltage breakdown ruggedness of the lateral semiconductor device. The vertical region provides a relatively lower breakdown voltage than a lateral region of the lateral semiconductor device. As such, the vertical region prevents a voltage breakdown from occurring in the lateral region of the lateral 15 semiconductor device.

FIG. 1 is a first embodiment of a lateral semiconductor device in the form of lateral transistor 10 having a vertical region 12 for protective avalanche breakdown between a drain electrode 14 and a conductive substrate 16. For the 20 purpose of this disclosure, a PAB is represented by a lightning bolt symbol. A semi-insulating layer(s) 18 and a device layer(s) 20 are disposed between the drain electrode 14 and the conductive substrate 16 with the drain electrode 14 being disposed onto the device layer(s) 20. A gate electrode 22 and 25 a source electrode 24 are also disposed on the device layer(s) **20**. However, the source electrode **24** is coupled to the conductive substrate 16 either internally or optionally by an external connection 26, which is shown using a thick dashed line in FIG. 1. The vertical region 12 has a relatively lower 30 breakdown voltage in comparison to a relatively larger breakdown voltage of a lateral region 28. As a result, voltage breakdown is prevented from occurring within the lateral

The relatively lower breakdown voltage is achieved in this 35 embodiment by adjusting a thickness T_{EPI} of epitaxial layers making up the semi-insulating layer(s) 18 and the device layer(s) 20 inside the vertical region 12 to be relatively less than a minimum lateral distance \mathcal{L}_{GD} between the drain electrode 14 and gate electrode 22. Moreover, a lateral distance 40 L_{GD} between the drain electrode 14 and the gate electrode 22 substantially influences the breakdown voltage of the lateral region 28. Moreover, other causes that influence the breakdown voltage of the vertical region 12 and the breakdown voltage of the lateral region 28 might not be related. As such, 45 no assumption is made that the T_{EPI} should be less than the L_{GD} in all circumstances. However, the T_{EPI} is less that the L_{GD} in typical circumstances. In any case, adjustments to the T_{EPI} relative to the L_{GD} must ensure that the breakdown voltage of the vertical region 12 is consistently less than the 50 breakdown voltage of the lateral region 28. Preferably, a PAB should occur in the vertical region 12 just before a voltage breakdown of the lateral region 28. Yet, as alluded to above, a margin between the PAB and the voltage breakdown of the lateral region 28 must be maintained to ensure the PAB occurs 55 before the voltage breakdown of the lateral region 28.

FIG. 2 is a lateral transistor 30 wherein the vertical region 12 includes an avalanche electrode 32 coupled to the drain electrode 14. In this embodiment, the avalanche electrode 32 is located within the vertical region 12 and is partially embedded in the device layer(s) 20. Moreover, the drain electrode 14 is disposed on the device layer(s) 20 at a location outside of the vertical region 12 and inside the lateral region 28. The drain electrode 14 is coupled to the avalanche electrode 32 via a conductor 34.

FIG. 3 is a sectional view of a lateral transistor 36 wherein the drain electrode 14 includes an edge termination 38 and is

4

located within the vertical region 12. The edge termination 38 reduces a two-dimensional electric field about the edge of the drain electrode 14, thereby making a PAB that occurs within the vertical region 12 more uniform.

FIG. 4 is a sectional view of a lateral transistor 40 wherein the avalanche electrode 32 includes an edge termination 42 for reducing a two-dimensional electric field that typically forms about the avalanche electrode 32. In this embodiment, the avalanche electrode 32 is located within the vertical region 12 and is partially embedded in the device layer(s) 20. Moreover, the drain electrode 14 is disposed on the device layer(s) 20 at a location outside of the vertical region 12 and inside of the lateral region 28. The drain electrode 14 is coupled to the avalanche electrode 32 via the conductor 34.

In at least one of the above embodiments, at least a portion of the vertical region 12 between the drain electrode 14 or avalanche electrode 32 and the conductive substrate 16 is doped to form a p-n junction 44 between the drain electrode 14 and the conductive substrate 16. The p-n junction 44 is a relatively rugged semiconductor structure that allows a PAB event to be non-destructive. In at least one embodiment, the p-n junction 44 comprises at least a portion of the drain electrode 14 of FIGS. 1 and 3, or the avalanche electrode 32 of FIGS. 2 and 4. Moreover, in at least one embodiment, at least a portion of the drain electrode 14 or the avalanche electrode 32 in contact with the device layer(s) 20 is an ohmic contact. In at least one other embodiment, at least a portion of the drain electrode 14 or the avalanche electrode 32 in contact with the device layer(s) 20 is a Schottky contact. The conductive substrate 16 can be, but is not limited to, silicon carbide (SiC), silicon (Si), gallium nitride (GaN), and zinc oxide (ZnO). In one embodiment, a bulk resistivity for the conductive substrate 16 ranges from around about 100 ohm-cm to around about 10 ohm-cm. In another embodiment, a bulk resistivity for the conductive substrate 16 ranges from around about 10 ohm-cm to around about 0.01 ohm-cm.

It is to be understood that the structures and techniques of the present disclosure are extendable to semiconductor devices other than transistors. For example, a lateral diode having a drain electrode that is an anode and a source electrode that is a cathode can be fabricated to include the vertical region for providing a PAB.

Those skilled in the art will recognize improvements and modifications to the embodiments of the present disclosure. All such improvements and modifications are considered within the scope of the concepts disclosed herein and the claims that follow.

What is claimed is:

- 1. A lateral semiconductor device comprising:
- a lateral structure comprising:
 - a conductive substrate;
 - at least one semi-insulating layer disposed on the conductive substrate;
 - at least one device layer disposed on the at least one semi-insulating layer;
 - a source electrode disposed on the at least one device layer:
 - a drain electrode disposed on the at least one device layer;
 - a vertical region that includes the drain electrode and at least a portion of the conductive substrate and that is separated from the source electrode by a lateral region wherein a breakdown voltage level for a protective avalanche breakdown (PAB) of the vertical region is lower than a breakdown voltage level of the lateral region; and
- an edge termination integral with the drain electrode.

5

- 2. The lateral semiconductor device of claim 1 wherein epitaxial layers making up the at least one semi-insulating layer and the at least one device layer have a thickness that is less than a minimum lateral distance between the drain electrode and a gate electrode disposed on the at least one device layer, thereby lowering the breakdown voltage level for a PAB of the vertical region relative to the breakdown voltage level of the lateral region.
- 3. The lateral semiconductor device of claim 1 wherein at least a portion of the vertical region between the drain electrode and the conductive substrate is doped to form a p-n junction between the drain electrode and the conductive substrate.
- **4**. The lateral semiconductor device of claim **3** wherein the p-n junction comprises at least a portion of the drain electrode. 15
- 5. The lateral semiconductor device of claim 1 further including an avalanche electrode disposed on the at least one device layer within the vertical region and coupled to the 20 drain electrode, wherein the drain electrode is within the lateral region.
- **6**. The lateral semiconductor device of claim **5** further including an edge termination integral with the avalanche electrode.
- 7. The lateral semiconductor device of claim 5 wherein the avalanche electrode is at least partially embedded within the at least one device layer.

6

- **8**. The lateral semiconductor device of claim **5** wherein at least a portion of the vertical region between the drain electrode and the conductive substrate is a p-n junction.
- 9. The lateral semiconductor device of claim 8 wherein the p-n junction comprises at least a portion of the avalanche electrode.
- 10. The lateral semiconductor device of claim 5 wherein at least a portion of the avalanche electrode is an ohmic contact.
- 11. The lateral semiconductor device of claim 5 wherein at least a portion of the avalanche electrode is a Schottky contact.
- 12. The lateral semiconductor device of claim 1 wherein at least one portion of the drain electrode is an ohmic contact.
- 13. The lateral semiconductor device of claim 1 wherein at least a portion of the drain electrode is a Schottky contact.
- **14**. The lateral semiconductor device of claim **1** wherein the conductive substrate is silicon carbide (SiC).
- **15**. The lateral semiconductor device of claim **1** wherein the conductive substrate is gallium nitride (GaN).
- **16**. The lateral semiconductor device of claim **1** wherein the conductive substrate is zinc oxide (ZnO).
- 17. The lateral semiconductor device of claim 1 wherein a bulk resistivity of the conductive substrate ranges from around about 100 ohm-cm to around about 10 ohm-cm.
- **18**. The lateral semiconductor device of claim **1** wherein a bulk resistivity of the conductive substrate ranges from around about 10 ohm-cm to around about 0.01 ohm-cm.

* * * * *